Synthesis of Cr(acac)₃ and Co(acac)₃

Process of Inorganic Chemistry Experiment

Synthesis of M(acac)₃ (M = Cr and Co)

Chelate Effect

→ Chelating ligands have a higher affinity to binding to the metal compared to the monodentate ligands.

Procedure 1. Synthesis

<Cr(acac)3>

• 50 mL of distilled water & 2.66 g of chromium(III) chloride hexahydrate in a 100 mL Erlenmeyer flask.

- Add 10 g of urea & 5.9 mL of acetylacetone.
- Heat the mixture for 1.5 hr.

<Co(acac)3>

- 1.25 g of cobalt(II) carbonate and 10 mL of acetylacetone in a 50 mL Erlenmeyer flask.
- Heat the mixture to 100 °C.
- Transfer the flask from the water bath, and add 2.5 mL of 30 $%$ H₂O₂ DROPWISE. **(Caution: Vigorous reaction)**
- Reheat, then add more 2.5 mL of 30 % H_2O_2 DROPWISE.
- Heat the mixture to 100 °C for 1 hr.

•**Tips!!**

- **First heat the water bath and then weigh the compounds**
- **Put two flasks in the same boiling water bath.**
- **Prepare a cold ethanol for the purification**

Procedure 1. Purification

<Cr(acac)3>

- Cool down the reaction mixture to room temperature.
- Filter the mixture and wash the violet solid with distilled water.
- Dry and measure the mass.

<Co(acac)3>

- Cool down the reaction mixture in an ice-salt bath for 30 minutes.
- Filter the mixture and wash the green solid with distilled water and small amount of cold ethanol.
- Dry and measure the mass.

Procedure 2. Purification-Recrystalization

Procedure 2. Purification-Recrystalization

- Take \sim 0.2 g of each sample.
- Dissolve in warm toluene. (small amount) to form saturated solution.
- Add few drops of petroleum ether slowly. \rightarrow crystals will form.
- Add more petroleum ether.
- Filter and wash with petroleum ether.
- Dry and measure mass .

<Cr(acac)3> <Co(acac)3>

Procedure 3. Characterization-UV

- The energy in the UV and visible light region is used to excite species to higher electronic energy levels.
- The absorbance, *A*, is defined as

 $A = \log(I_0/I)$, where $I_0 =$ incident intensity and I = measured intensity

• Beer-Lambert Law

 $A = \epsilon bc$, where $\epsilon =$ extinction coefficient (L⋅mol⁻¹⋅cm⁻¹), $$ and $c =$ molar concentration (mol⋅L⁻¹)

 $\epsilon = 10^3 \sim 10^5$ dm³⋅mol⁻¹⋅cm⁻¹ for fully allowed transition. $\epsilon = 10^0 \sim 10^3$ dm³⋅mol⁻¹⋅cm⁻¹ for orbitally forbidden transition. $\epsilon = 10^{-5} \sim 10^{0}$ dm³⋅mol⁻¹⋅cm⁻¹ for spin forbidden transition.

Procedure 3. Characterization-UV

Selection Rule

1. Laporte Selection rule

 \rightarrow For centrosymmetric molecules, electronic transitions that conserve pairity are forbidden.

 $(g \rightarrow g \text{ or } u \rightarrow u)$

- 2. Spin Selection rule
	- \rightarrow Transitions with same spin state is allowed.

ex) Metal d-d transition

 \rightarrow Spin allowed, Laporte forbidden

Procedure 3. Characterization-NMR

One is $Co(acac)₃$ and another is $Cr(acac)₃$. Which is which?

Procedure 3. Characterization-NMR

This is acetylacetone NMR data. Explain this peak splitting.

Procedure 3. Characterization-NMR

d-orbital splitting of the octahedral complex

