Synthesis of Cr(acac)₃ and Co(acac)₃

Process of Inorganic Chemistry Experiment

Synthesis of $M(acac)_3$ (M = Cr and Co)

Chelate Effect

→ Chelating ligands have a higher affinity to binding to the metal compared to the monodentate ligands.

Procedure 1. Synthesis

<Cr(acac)₃>

• 50 mL of distilled water & 2.66 g of chromium(III) chloride hexahydrate in a 100 mL Erlenmeyer flask.

- Add 10 g of urea & 5.9 mL of acetylacetone.
- Heat the mixture for 1.5 hr.

<Co(acac)₃>

- 1.25 g of cobalt(II) carbonate and 10 mL of acetylacetone in a 50 mL Erlenmeyer flask.
- Heat the mixture to 100 °C.
- Transfer the flask from the water bath, and add 2.5 mL of 30 % H₂O₂ DROPWISE. (Caution: Vigorous reaction)
- Reheat, then add more 2.5 mL of 30 % H₂O₂ DROPWISE.
- Heat the mixture to 100 °C for 1 hr.

•Tips!!

- First heat the water bath and then weigh the compounds
- Put two flasks in the same boiling water bath.
- Prepare a cold ethanol for the purification

Procedure 1. Purification

<Cr(acac)₃>

- Cool down the reaction mixture to room temperature.
- Filter the mixture and wash the violet solid with distilled water.
- Dry and measure the mass.

<Co(acac)₃>

- Cool down the reaction mixture in an ice-salt bath for 30 minutes.
- Filter the mixture and wash the green solid with distilled water and small amount of cold ethanol.
- Dry and measure the mass.

Procedure 2. Purification-Recrystalization

Solvent	Boiling point	<u>Dielectric</u> <u>constant</u>	<u>Density</u>
Non-Polar Solvents			
<u>Hexane</u>	69 °C	2.0	0.655 g/ml
<u>Benzene</u>	80 °C	2.3	0.879 g/ml
<u>Toluene</u>	111 °C	2.4	0.867 g/ml
<u>Diethyl ether</u>	35 °C	4.3	0.713 g/ml
<u>Chloroform</u>	61 °C	4.8	1.498 g/ml
Ethyl acetate	77 °C	6.0	0.894 g/ml
Polar Aprotic Solvents			
<u>1,4-Dioxane</u>	101 °C	2.3	1.033 g/ml
<u>Tetrahydrofuran</u> (THF)	66 °C	7.5	0.886 g/ml
Dichloromethane (DCM)	40 °C	9.1	1.326 g/ml
<u>Acetone</u>	56 °C	21	0.786 g/ml
Acetonitrile (MeCN)	82 °C	37	0.786 g/ml
Dimethylformamide (DMF)	153 °C	38	0.944 g/ml
Dimethyl sulfoxide (DMSO)	189 °C	47	1.092 g/ml
Polar Protic Solvents			
<u>Acetic acid</u>	118 °C	6.2	1.049 g/ml
<u><i>n</i>-Butanol</u>	118 °C	18	0.810 g/ml
Isopropanol (IPA)	82 °C	18	0.785 g/ml
<u>n-Propanol</u>	97 °C	20	0.803 g/ml
<u>Ethanol</u>	79 °C	24	0.789 g/ml
Methanol	65 °C	33	0.791 g/ml
Formic acid	100 °C	58	1.21 g/ml
<u>Water</u>	100 °C	80	1.000 g/ml

Procedure 2. Purification-Recrystalization

- Take ~ 0.2 g of each sample.
- Dissolve in warm toluene. (small amount) to form saturated solution.
- Add few drops of petroleum ether slowly. → crystals will form.
- Add more petroleum ether.
- Filter and wash with petroleum ether.
- Dry and measure mass .

<Cr(acac)₃>

<Co(acac)₃>

Procedure 3. Characterization-UV

- The energy in the UV and visible light region is used to excite species to higher electronic energy levels.
- The absorbance, **A**, is defined as

 $A = \log(I_0/I)$, where $I_0 =$ incident intensity and I = measured intensity

• Beer-Lambert Law

 $A = \varepsilon bc, \text{ where } \varepsilon = \text{extinction coefficient (L·mol⁻¹·cm⁻¹),} \\ b = \text{optical path length (cm),} \\ \text{and } c = \text{molar concentration (mol·L⁻¹)}$

 $\varepsilon = 10^3 \sim 10^5 \text{ dm}^3 \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}$ for fully allowed transition. $\varepsilon = 10^0 \sim 10^3 \text{ dm}^3 \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}$ for orbitally forbidden transition. $\varepsilon = 10^{-5} \sim 10^0 \text{ dm}^3 \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}$ for spin forbidden transition.

Procedure 3. Characterization-UV

Selection Rule

1. Laporte Selection rule

→ For centrosymmetric molecules, electronic transitions that conserve pairity are forbidden.

 $(g \rightarrow g \text{ or } u \rightarrow u)$

- 2. Spin Selection rule
 - → Transitions with same spin state is allowed.

ex) Metal d-d transition

→ Spin allowed, Laporte forbidden

Procedure 3. Characterization-NMR

One is $Co(acac)_3$ and another is $Cr(acac)_3$. Which is which?

Procedure 3. Characterization-NMR

This is acetylacetone NMR data. Explain this peak splitting.

Procedure 3. Characterization-NMR

d-orbital splitting of the octahedral complex

